
AXELOS Copyright
View Only – Not for Redistribution

© 2019

Software development and management

ITIL®4 Practice Guide

AXELOS.com

22 November
2019

2
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

Contents

 About this document 3

 General information 4

 Value streams and processes 12

 Organizations and people 17

 Information and technology 22

 Partners and suppliers 25

 Important reminder 26

 Acknowledgments 27

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

3

AXELOS Copyright

View Only – Not for Redistribution
© 2019

 About this document
This document provides practical guidance for software development and management. It is split
into five main sections, covering:

● general information about the practice
● the processes and activities of software development and management and their roles in the

service value chain
● the organizations and people involved in software development and management
● the information and technology supporting software development and management
● considerations for partners and suppliers for software development and management.

1.1 ITIL® 4 QUALIFICATION SCHEME

Selected content from this document is examinable as a part of the following syllabuses:

● Create, Deliver and Support
● High-velocity IT

Please refer to the respective syllabus documents for details.

4
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

 General information
2.1 PURPOSE AND DESCRIPTION

The purpose of the software development and management practice is to ensure that
applications meet internal and external stakeholder needs, in terms of functionality, reliability,
maintainability, compliance, and auditability.

The Software Development and Management practice focuses on development and management of
application software. However many of the principles are also applicable to the software that is
part of the infrastructure on which applications are developed and managed. Software engineering
is increasingly important for infrastructure and platform management, for example in the
application of Infrastructure as Code. This concept uses machine-readable definition files to
manage and provision IT infrastructure and platforms, instead of physically configuring hardware
components.

Software development and management covers the whole lifecycle of applications. This can vary
from several months to several decades and is on average 10-15 years. From an economic
perspective, historically on average 20% of the total costs of ownership of an application was spent
on development as opposed to management, and 20% of software management costs is related to
corrective maintenance.

In the modern world bigger shares of an application’s total costs of ownership shifts to
development. Since constant changes become an integral part of the application lifecycle, all
maintenance activities can become a part of development and are usually not referred to as
maintenance.

2.2 TERMS AND CONCEPTS

Software

a set of instructions that tell the physical components (hardware) of a computer how to work.
Software manifests itself in applications for end users but also in the underlying infrastructure that
is needed to develop and operate applications. Software and infrastructure are service
components that are combined with other service components or resources to form products and
services.

Software is a crucial part of business: It can provide value to customers through technology-
enabled business services. Software development becomes critical as most modern services
become not software-aided, but software-enabled.

Software Development

the design and construction of applications according to functional and non-functional
requirements and correction and enhancement of operational application according to changing
functional and non-functional requirements.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

5

AXELOS Copyright

View Only – Not for Redistribution
© 2019

The trend to outsource software development services has been reversed in recent years, with
many organizations taking critical and strategic development back in-house. This includes banks,
insurance and retail companies.

Maintenance

the modification of the application as part of development, for both correction and
enhancement purposes:

• Corrective: correcting defects in the application that have caused incidents
• Preventive: preventing defects in the application before they have manifested

themselves
• Adaptive: adapting the application to work with changed infrastructure
• Perfective: enhancing the functionality, usability and performance of the application

(sometimes known as ‘additive maintenance’, ‘enhancement’ or ‘development’).

With the rate of change modern services are experiencing, services become ever-changing. It is
usual for the modern application to be modified throughout its lifecycle. This means that all the
activities which used to form maintenance are now part of development process.

Software management is a broader term, potentially referring to application strategy and
planning, operation, safekeeping of the application artefacts and application decommissioning.

The purpose of the practice states that applications should meet internal and external stakeholder
needs, in terms of functionality, reliability, maintainability, compliance, and auditability. All the
terms mentioned describe software quality.

Software Quality: a qualification of the value of software as a product and in its use. A common
categorization (ISO/IEC 25010:2011) is:

• Product quality: Functional suitability, Performance efficiency, Compatibility, Usability,
Reliability, Security, Maintainability, and Portability

• Quality in use: Effectiveness, Efficiency, Satisfaction, Freedom from risk, and Context
coverage

Quick-fixes are often preferred to proper but time-consuming changes. The high rate of change in
software may lead to an accumulated amount of rework that will have to be done at some point,
known as a technical debt.

Technical Debt: The total rework backlog accumulated by choosing workarounds instead of system
solutions that would take longer. In case of software development and management, it’s total
amount of rework needed to repair substandard (changes to) software.

For many practitioners involved in software development and management the main watershed
lies in how “agile” the chosen software development lifecycle (SDLC) model is.

6
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

SDLC model: the sequence in which the stages of the software development lifecycle are
executed. The major stages are:
establish requirements
• design
• code
• test
• run/use the application.
• Waterfall model: each stage of the development lifecycle is executed in sequence,

resulting in a single delivery of the whole application for use.
• Incremental model: after the requirements and priorities for the whole application have

been established the application is developed in parts (builds). For each build, each of the
further stages of the development lifecycle is executed in sequence. Builds can be
(partially) developed in parallel, and the application is delivered in useable parts.

• Iterative or evolutionary model: after the requirements and priorities for the whole
application have been partially established, the application is developed in separate builds
such as in the incremental model, but because the requirements could not be fully
established at the start, the design, coding, testing or the use of a build may lead to
refinement of the requirements, leading to refinement of part of the application in
another build.

Agile and Scrum approaches are a combination of incremental and iterative, focusing on close
collaboration with the owner of the application in order to obtain fast feedback and achieve quick
development of small increments from which the owner can derive value.

Definition of Scrum:

an iterative, timeboxed approach to product delivery that is described as ‘a framework within
which people can address complex adaptive problems, while productively and creatively delivering
products of the highest possible value’ (The Scrum Guide by Ken Schwaber and Jeff Sutherland,
updated November 2017).

DevOps approaches further improve throughput by speeding up the transition from coding to
run/use, using techniques such as Continuous Integration / Continuous Delivery to (partially)
automate the deployment pipeline.

Many agile approaches use ‘definition of done’ as a tool to agree the set of criteria to be met
before the product or product increment/backlog item is considered done.

Definition of Done: the agreed criteria for a proposed product or service, reflecting functional and
non-functional requirements.

2.3 SCOPE

The scope of software development and management is defined in terms of activities and the
resources affected by the activities.

The activities supported by the software development and management practice include:

● Application development

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

7

AXELOS Copyright

View Only – Not for Redistribution
© 2019

● Software and software artefacts management
● Operating the application (in close collaboration with infrastructure and platform management).

The resources within the scope of the software development and management practice are the
concrete application artefacts within the various environments that are used. The major
application artefacts are specifications, designs, source code, object code and documentation.

In terms of responsibilities, software development and management is positioned between:

● the owners of the application, who determine the requirements for development and/or
management

● infrastructure management, that (a) provides the environments for software development and
management and (b) manages the production environment in which software management
operates the applications

● users that require support regarding the use of applications
● software management organizations that:

• were previously tasked with management of the application and are involved with
onboarding of an application

• are tasked with the future management of the application and are involved with offboarding
of an application.

There are many activities and areas of responsibility that are not included in the software
development and management practice, but they are still closely related. These are listed in
table 2.1, with references to the practices in which they can be found. It is important to
remember that ITIL practices combine value chain activities through value streams to deliver
value.

Table 2.1-related activities described in other practice guides

Activity Practice guide
Software architecture Architecture management
Utility and warranty
requirements

Business Analysis

Deployment of application
artefacts from one environment
to another

Deployment management

Providing interface for feedback
from users

Service desk

Application portfolio
management

Portfolio management

Making applications available for
use and enabling users

Release management

Validating that application meets
the requirements
Testing the potentially releasable
application

Service validation and testing

8
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

Orchestrating overall design for
applications

Service design

Applications monitoring Monitoring and event management

2.4 PRACTICE SUCCESS FACTORS

Practice Success Factor (PSF)

A complex functional component of a practice that is required for the practice to fulfil its
purpose.

A PSF is more than a task or activity; it includes components from all four dimensions of service
management. The nature of the activities and resources of PSFs within a practice may differ, but
together they ensure that the practice is effective.

The software development and management practice includes the following PSFs:

● agree and improve an organization's approach to development and management of software
● ensure that software continually meets organization's requirements and quality criteria

throughout its lifecycle.

The first PFS is about selecting the appropriate approach and the second one about applying it.

2.4.1 Agree and improve an organization's approach to development and
management of software

There are various ways of developing and managing software, as described in SLDC model (2.2).
These are waterfall, incremental and iterative (or evolutionary). Agile and Scrum approaches are a
combination of incremental and iterative.

It is a prerequisite for software development and management that multiple approaches are
available. These reflect the variety of situations that are expected to occur. This strategic
decision also involves other practices, for example architecture management, business analysis,
change enablement, release management, deployment management, information security
management, portfolio management, risk management, service validation and testing, and
strategy management. The decision is therefore taken in the context of the (service) value streams
in which these practices are applied.

This Practice Success Factor for software development and management concerns itself with the
tactical decision to select from this pre-defined set of approaches, the best approach for each
software product, based on the organization’s requirements for the product.

This tactical choice depends on how much information is available about both the work to be
completed and the resources that are needed to execute the work. The work to be completed can
be subdivided into the requirements and the priority with which they must be fulfilled. Depending
on the how much information is available about the requirements, priorities and required
resources, an appropriate approach can be selected.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

9

AXELOS Copyright

View Only – Not for Redistribution
© 2019

Some examples:

● A waterfall approach can be an effective choice when the requirements and priorities are
known, and when it is also known how to develop the software, and which resources are
needed.

● A timeboxing approach in which the most important work items are developed first, could be a
better choice when the requirements and priorities are known, but it is not yet known how to
develop the software and which resources are needed.

● When the requirements and priorities are known at a high level but are difficult to finalise, a
linear iterative approach would allow the product owner to experience and refine the product
across several iterations.

● Parallel experimentation may provide the product owner with prototypes that help formulate
the requirements when the requirements are ambiguous or even unarticulated.

Different approaches require different combinations of resources. These resources span all four
dimensions of service management and are addressed in sections 3-6 of this document.

Commonly encountered combination of resources:

● Small, relatively independent, multi-functional, product-based development/maintenance
teams in which a product owner manages the priority of the work to be done

● Platform-based teams that support the development/maintenance teams with the
(self-)provision of the required infrastructure for development/maintenance and production

● Version control tooling that tracks all production artefacts (e.g. code and documentation)
● Automated processes for continuously integrating and delivering/deploying software.

Several practices are involved in realizing this PSF. The requirements for the approach from
software development and management emerge in the form of organizational performance
information and improvement opportunities. These transformed into improvement initiatives and
plans (continual improvement). the plans are executed (organizational change management),
resulting in various approaches and resources that can be applied according to the characteristics
of the work to be done (software development and management).

2.4.2 Ensure that software continually meets organization's
requirements and quality criteria throughout its lifecycle

Software quality is used to describe software as a product and in its use, commonly in terms
such as:

● Product quality: Functional suitability, Performance efficiency, Compatibility, Usability,
Reliability, Security, Maintainability, and Portability

● Quality in use: Effectiveness, Efficiency, Satisfaction, Freedom from risk, and Context coverage.

In the ISO/IEC 25010:2011 standard, each of these characteristics comprises up to six sub-
characteristics that help to specify the desired properties of the software.
They can also be regarded as utility requirements (e.g. Functional suitability and Usability) and
warranty requirements (e.g. Performance efficiency and Maintainability).

Software Development and Management-related activities influence, or are influenced by, these
characteristics. For example, Maintainability depends significantly on how source code is
structured and documented (both in the documentation for maintenance and in the source code

10
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

itself). At the start of the initial development of the software, decisions are taken how much time
to invest in maintainability. This depends on how much maintenance is expected, and whether the
investment will be worthwhile. During the initial development of the software, these requirements
are fulfilled. The initial development therefore influences the maintainability of the software.
After the initial development, maintenance is affected by the realised maintainability of the
software. Understanding the software typically represents half of the maintenance effort, so
maintainability influences the speed and cost of maintenance.

Maintenance is not only influenced by maintainability but also influences it. The quality of
software tends to degrade (‘software entropy’) unless an effort is made to maintain it. This
investment limits technical debt (the rework needed to repair substandard changes to software).

Many of the requirements for these software quality characteristics are input for software
development and management. They are determined by the owner of the software. However,
some characteristics are not the primary concern of software development and management. For
example, effectiveness is determined by the users’ understanding of the software and how they
use it and the information or devices that the software enables.

The most important components of this Practice Success Factor are:

● Understanding the source code, how the various modules are interrelated, and the application
architecture

● Understanding the requirements and the context in which the application is used
● Ensuring that non-functional (warranty) requirements are included in the Definition of Done
● Creating tests before coding
● Effective version control of all application artefacts
● Approaching the task of coding with a full appreciation of its tremendous difficulty and

respecting the intrinsic limitations of the human mind1
● Adhering to coding conventions
● Peer review
● Fast feedback from testing, for example by using automated testing, and taking remedial action

quickly.

Software development and management is not the only practice involved. Realising this PSF also
entails establishing the right requirements for the software (business analysis), testing whether the
software complies with these requirements (service validation and testing), running the software
on the production infrastructure (infrastructure and platform management), formulating problem
reports (problem management), etc. The metrics must therefore be regarding in this broader
context.

2.5 KEY METRICS

The ITIL practices are means, or tools, for the management of products and services. Like the
performance of any tool, practice performance can be assessed only in the context of that tool’s

1 Dijkstra, E.W. The Humble Programmer (1972)
www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html [Accessed 29th October 2019]

http://www.cs.utexas.edu/%7EEWD/transcriptions/EWD03xx/EWD340.html

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

11

AXELOS Copyright

View Only – Not for Redistribution
© 2019

application. However, tools can differ in quality. This difference defines the tool’s potential or
capability

Table 2.2 Example metrics for the practice success factors

Practice success factors Example metrics

Agree and improve an
organization's approach to
development and management of
software

● Stakeholders’ satisfaction with the approach chosen for
software development and management

● Percentage of the development teams following the chosen
approach

● Stakeholders’ satisfaction with the rate of change allowed by
the chosen approach

● Improvement initiatives throughput for the software
development and management practice

● Approach compliance to the internal and external
requirements, policies and legislation.

Ensure that software continually
meets organization's
requirements and quality criteria
throughout its lifecycle

● Stakeholder satisfaction with the applications delivering the
value

● Applications compliance with internal and external
requirements and policies

● Frequency of delivery of software (for new or changed
functionality)

● Speed of delivery of software (from receipt of specifications to
code committed to the repository and released for
deployment)

● Reliability of delivery of software (defects detected after
release for deployment)

● Cost (per function point or other unit of size; decreasing cost)
● Technical debt (estimated cost of rework to repair

substandard (changes to) software)
● Resource utilization (compute, network, storage)
● Availability of software (MTTR, MBTF)
● Security breaches and costs related to audits etc.

12
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

 Value streams and processes
3.1 VALUE STREAM CONTRIBUTION

Like any other ITIL management practice, software development and management contribute to
multiple value streams. Remember, no value stream is made up of a single practice. Software
development and management combines with other practices to provide high-quality services to
consumers. The main value chain activities to which software development and management
contributes are:

● Obtain/build
● Deliver and support

Figure 3.1 Heat map showing the main value chain activities to which software

development and management contribute to.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

13

AXELOS Copyright

View Only – Not for Redistribution
© 2019

Figure 3.2 Code, build and run correspond with the service value chain activities

Obtain/build and Deliver (and support)

3.2 PROCESSES

Each practice may include one or more processes and activities that may be necessary to fulfil the
purpose of that practice.

Process

A set of interrelated or interacting activities that transform inputs into outputs. Processes
define the sequence of actions and their dependencies.

There are numerous models to structure processes of the software development and management
practice. These span several decades and range from waterfall, such as the V-model or the
Winston W. Royce’s model, to iterative and incremental ones, such as Agile and Spiral approaches.

A service provider organization normally combines vastly different approaches to achieve the most
efficient and manageable set of repeatable processes. However, a set of activities common among
the majority of practical approaches can be identified for the purposes of this publication.

14
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

TABLE 3.1 Inputs, Activities and Outputs of the Software Development and

Management practice

Input Activities Output

● Business case, business logic
requirements, service
models, architecture
documents, user stories,
tasks, defects in the
existing backlog and project
plan

● Relevant backlog\project
items

● Existing environment
configuration

● Existing development
toolset and version tracking
methods

● User feedback on
applications

● Technical standards for
application development.

● Product planning and
prioritization

● Software design
● New code production
● Code review
● Defect handling
● Technical debt management
● Code refactoring
● Research and Development
● Regular meetings and

improvement activities
● Software operation and

maintenance automation
● Managing development

environments
● Version Control.

● New backlog/project tasks,
project or change delivery plan

● Technical requirements for new
or changed software.

● Application code, test cases,
automated unit tests

● Updated code, new backlog
items

● Meeting agendas, meeting
minutes, schedules, meeting
minutes, decisions and new
rules, action plans

● Software pipeline, monitoring,
and maintenance automation
tools

● Updated development
environment configuration

● New versions ready for
deployment, software change
record keeping

● New/proposed changes to
architectural decisions

● Information about the value of
the software

● Release notes about the
software being developed:
technical documents and user
documentation (how to use,
install, configure);
administration documentation
(how to manage)

● New/proposed changes to
technical standards.

Table 3.XX below suggests two different scenarios of realising the activities: in a traditional
waterfall project environment, and in an agile product centred development team.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

15

AXELOS Copyright

View Only – Not for Redistribution
© 2019

TABLE 3.2 Activities of the Software Development and Management practice

Activity Project management example Product management example

Product planning and
prioritization

A requestor submits a new batch
of work to a relevant project
manager, or to a development
team leader.

A product owner collects new
external requirements, including
discovered defects to a backlog,
and possibly along with the
development team selects the
tasks from backlog to be
delivered in the next iteration.

Software design A developer or an analyst
delivers technical code
requirements to be realized in
the software, based on the
business logic documents.

Based on the specifics of the
software and coding
conventions, the technical
specifications and algorithm
descriptions can be built in the
code directly with no separate
documentation delivered.

New code production A software developer delivers
the software code along with the
unit tests and ensures the unit
tests pass completion. They then
submit the code for testing and
validation and approval.

A software developer delivers
the software code and ensures
the unit tests pass completion.
They then commit the code for
automated or manual testing.

Defect handling A software developer analyses
the defect task to verify the
defect. They raise project issue
with the project management to
ensure resources to fix the
defect are planned. and amends
the software code accordingly.

A software developer analyses
the defect task to verify the
defect. They then amend the
software code to fix the defect.

Technical debt mitigation A software developer analyses the technical debt task and amends
the software code or architecture accordingly.

Code review A software developer checks the code by viewing or reading the
code. It is preferable that at least one of the reviewers is not an
author of the code.

Code refactoring Refactoring is restructuring source code without changing its
external behavior, with the intent to improve the maintainability,
efficiency etc.
A software developer analyses the code refactoring tasks and
amends the software code or architecture accordingly.

Research and Development A software developer analyses the research and development
task, in the backlog and proposes new tasks to be added to the
backlog.

Regular meetings and
improvement activities

Software developers, or
development team leader

The development team performs
regular iteration assessment, for

16
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

participate in project
communications and interact
with other project teams to
ensure timely information
exchange, and risk and issue
management.

example to ensure valid progress
on the tasks, to plan next period
of work, and to highlight
impediments.

Software operation and
maintenance automation

During an implementation
project, the software developers
deliver a toolset to automate
operations of the software, such
as diagnostics harvesting,
resilience enhancements,
monitoring and alerting systems,
routine maintenance, etc.
Software developers maintain
and evolve the toolset alongside
software operations.

The software developers
optimize the human resources
required to operate the software
by developing and evolving an
operations toolset.

Managing development
environments

The development team leader ensures that a development
environment configuration is provided to the development team.

Version Control The development team leader implements a version control rules
and toolset to ensure consistent code tracking among the team
members.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

17

AXELOS Copyright

View Only – Not for Redistribution
© 2019

 Organizations and people
4.1 ROLES, COMPETENCIES, AND RESPONSIBILITIES

The practice guides do not describe the practice management roles such as practice owner,
practice lead or practice coach. The practice guides focus on specialist roles specific to each
practice. The structure and naming of each role may differ from organization to organization, so
any roles defined in ITIL should not be treated as mandatory, or even recommended. Remember:
roles are not job titles. One person can take on multiple roles and one role can be assigned to
multiple people.

Roles are described in the context of processes and activities. Each role is characterized with a
competence profile based on the following model:

Competence
code

Description

L Leader. Activities and skills associated with this competence include decision
making, delegation, overseeing other activities, incentives and motivation, and
evaluating outcomes.

А Administrator. Activities and skills associated with this competence include the
assignment and prioritization of tasks, record keeping, ongoing reporting, and basic
improvement initiatives.

C Coordinator/communicator. Activities and skills associated with this competence
include the coordination of multiple parties, communication between stakeholders,
and the running of awareness campaigns.

М Methods and techniques expert. Activities and skills associated with this
competence include the design and implementation of work techniques, the
documentation of procedures, consulting on processes, work analysis, and continual
improvement.

Т Technical expert. This competence focuses on technical (IT) expertise and
expertise-based assignments.

4.1.1 Roles involved in the software development and management
activities

Examples of roles which can be involved in the deployment management activities are listed in
table 4.1, together with the associated competence profiles and specific skills.

18
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

Table 4.1 The roles involved in deployment management activities

Activity Responsible roles
(examples)

Competency
profile

Specific skills

Product planning and
prioritization

Project manager

Product owner

CMLT Good knowledge of business
objectives

Good command of project
management practices and
other relevant delivery
methods

Software design Business Analyst

Or

Software Developer

TM Technical development and
analysis tools specific to
software

New code production Software Developer TM Technical development and
analysis tools specific to
software

Defect handling Software Developer TM Technical development and
analysis tools specific to
software

Technical debt mitigation Software Developer TM Technical development and
analysis tools specific to
software

Code review Software Developer TM Technical development and
analysis tools specific to
software

Code refactoring Software Developer TM Technical development and
analysis tools specific to
software

Research and Development Software Developer TMC Technical development and
analysis tools specific to
software

Regular meetings and
improvement activities

Software development
team leader, Product
owner, software
developers, business
analysts, Testing
engineers, Scrum master

CLT Technical development and
analysis tools specific to
software

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

19

AXELOS Copyright

View Only – Not for Redistribution
© 2019

Software operation and
maintenance automation

Software Developer TMC Technical development and
analysis tools specific to
software

Understanding of software
operations and nature of the
manual activities required to
maintain and operate the
software.

Managing development
environments

Software Development
team leader, software
developers, infrastructure
engineer

MTC Good knowledge of controlled
environment configuration

Version Control Software Development
team leader, software
developers

MTC Good knowledge of software
version tracking approaches

4.1.2 Software developer /team member

The key role for the software development and management practice is the developer, or an
engineer. This is the most common type of a knowledge worker in the IT field. The algorithmic
thinking is a core of the skillset for a software developer. Other aspects of the core software
developer knowledge and skill set are:

● Programming languages, environments, and technologies
● Object oriented software design
● Contemporary system architectures, such as Event Driven Architecture (EDA)
● Software testing approaches and methods
● Problem-solving techniques.

However, a modern software developer needs to have a strong command of a broad spectrum of
technical and communication competencies:

● Knowledge of technologies adjacent to the technology stack that they work in
● Techniques to plan and priorities activities, decisions, and risk mitigation measures within their

scope of control, be it themselves, or the team they manage
● Skills in interpersonal, bi-directional, and broadcasting communications, including ability to

highlight issues, transfer ideas and concepts, and document and present the solutions
● Continuous learning ability to keep up with the pace of technology evolution.

There are also a set of personal traits that a software developer must maintain and harness:

● Willingness to quickly advance on a problem resolution journey to explore new possibilities, to
experiment, and to take reasonable risks (see for example the OODA Loop approach, High-
velocity IT).

● Eagerness to review what has been done, such as bug fixing, code refactoring, legacy software
maintenance, and technical debt tasks.

20
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

● Systemic approach to the operations tasks, with an outlook to automate deployment,
maintenance, backup, monitoring and other mundane chores related to operating of the
software.

● Agility in teamwork approach, where software developers migrate between teams, products, or
projects, which is especially crucial in commercial and large-scale service provider
organizations.

4.1.3 Software team leader

It is common for a software developer to go through a career progression from a junior developer,
dealing with elementary tasks of low risk, to a senior developer with more experience around a
specific product and underpinning technologies. A senior developer can be the key knowledge
bearer other development team members seek for advice.

One career path open to a senior developer is a team leader, colloquially known as a ‘team lead’
role. A team leader can in some organizational environments carry a managerial designation
(especially in traditional teams) but is first and foremost a servant leader for their team of
developers (read more on Servant Leadership in High-velocity IT and Create, Deliver and Support).

The primary task of a team leader is to be an effective liaison for their software development
team within a broader business or service provider context. Apart from skills and behaviours listed
for a software developer, the following should be prominent in a team leader:

● Understanding of the business problem the software is solving
● Understanding of impediments their team is facing
● Understanding of the service provider context and value streams that the service provider which

the development team is part of owns
● Understanding of the business context the software is going to be used in
● Understanding of other disciplines like management, product development, marketing, etc.
● Negotiation techniques
● Motivation and incentivising of the personnel techniques.

There are further roles within a software development and management organization with
progressively expanding scope of control, such as tech lead, development managers, etc. See
section 4.2 Organizational structures below.

4.1.4 Scrum master / Agile coach

A Scrum master is a colloquial term originating from the Scrum Guide by Jeff Sutherland and Ken
Schwaber (see https://www.scrumguides.org). This role normally represents a coaching discipline
in an Agile environment. The scrum master is there to ensure that an agile way of working is
adhered to by all staff involved. This objective can be realised in a variety of ways, from purely
consulting and communication tasks to a subset of the servant leadership and management tasks.
In the latter case naturally the team leader takes upon responsibilities of a scrum master.

The importance of coaching originates from the fact that agile methods require foundational
changes to the habits and traditions around how the services and products are delivered. Coaching
helps team members develop and maintain new behaviours and attitudes, as well as promote the
visibility of the outcomes of all team activities. The coaching for example is the foundation of
suggested Toyota Kata continual improvement practice (see 3.4.3 High-velocity IT).

https://www.scrumguides.org/

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

21

AXELOS Copyright

View Only – Not for Redistribution
© 2019

Read more on the culture shift that modern agile service provider environments require in High-
velocity IT (3. High-velocity IT culture) and in Create, Deliver and Support (2.3 Developing team
culture).

4.1.5 Product owner

This is a role external to the software development and management team, but which is
paramount to its success. The product owner is generally defined in some agile frameworks as the
person ultimately responsible for business results. There are parallels in a traditional
organizational set up, such as project managers, or even service owners.

The software development and management practice may be realised in a service provider
organization in a variety of ways, including agile frameworks such as Scrum. It is crucial therefore
to define a single authority for the development team to turn to for prioritization of its work, and
for external escalations. Therefore this role is the pivotal point to enable correct interfaces
between the development team and other parts of service provider and service consumer
organizations.

4.2 ORGANIZATIONAL STRUCTURES AND TEAMS

However talented or productive, a single development team can rarely satisfy all the demand for
new or updated services. As the size of a team is conventionally defined around natural ability to
manage directly, i.e. 5-7 staff per manager, the number of development teams is a primary
organizational variable, determining the human resource investment in the software development
and management practice.

Although all software development and management teams perform similar activities, they can be
grouped together differently, depending on relative importance of software products in the service
offerings and on overall organizational design, for example:

● the purpose and functionality of the software
● the functionality of the software
● the platform on which the software runs
● the type or brand of technology used.

One example is product teams: a relatively self-contained, multi-disciplinary and multi-tasking
development/management team that exists for as long as the application (the ‘product’) exists;
this is an alternative to temporary project-based teams that are formed to execute a project and
are then disbanded. Work is executed in more consistently than in the project-based scenario.

By the end of the 20th century, application development and management departments within
internal and commercial IT service providers acted mostly as independent units, at times even as
parts of different entities. The disconnect between the two has not been dissimilar to the
traditional project vs operations silos. However, more recently these two departments are being
brought together, experiencing greater pressure from the business to be more responsive and
cooperative. The DevOps model caters for such integration, suggesting that the onus is on
developers to ensure automated and error-prone deployment of software and its ongoing operation
and maintenance.

22
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

 Information and technology
5.1 INFORMATION EXCHANGE

Effective information exchange is essential for the success of the software development and
management practice. It is important to note that each development team rarely acts
independently by delivering a full-scale software product, but rather contributes constituent parts
to service offerings. Such team depends on outputs from other teams (such as infrastructure and
platform management) and produces outcomes likely used by other development team (for
example reusable code libraries) and further steps in value streams (such as quality assurance or
deployment).

Requirements, support requests and incidents are the primary input for software development and
management, and access to and information about the operational application are the primary
output.

Figure 5.1 software development and management input and output

It is important information exchange is clear and reliable. It should be designed to be efficient
both among team members, possibly widely distributed geographically, and also with external
teams.

At the core of almost every activity in the software development and management practice is the
concept of an item in a backlog.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

23

AXELOS Copyright

View Only – Not for Redistribution
© 2019

Depending on specific toolset or a method in use, the items can bear different names and
taxonomies. A hierarchical roll-up groupings, such as ‘epic’ or ‘themes’ can be in use in
development environments where hundreds and thousands of items are in progress simultaneously.
In some cases, items of different nature can even have different life stages and progress
conditions. And large development and product-focused organisations can adopt a hierarchy of
backlogs to distribute and control items flow.

It is nevertheless generally accepted that items of a backlog should be processed in a unified lean
manner, much like the value stream method suggests. The development team should plan the
work, look for bottlenecks,l and focus its activities and information exchange on the value it
delivers.

An agreed amount of documentation must be produced to support:

● Ongoing development
● Operations
● Use.

This documentation is in addition to temporary design documentation, which describes what needs
to be created or modified.

5.2 AUTOMATION AND TOOLING

Software-related activities benefit greatly from information management tools that underpin
them. Table 5.X below suggests specific tools for each of the activities.

TABLE 5.1 Automated solutions for software development and management

activities.

Activity Means of Automation Key Functionality Impact on Practice

Product planning and
prioritization

Task and workflow
tracking toolset

Project management
toolset

Work scheduling and
visualization

High

Software design Development toolset,
development
environments

Collaboration and
automated design

High

New code production Development toolset,
development
environments

Code management High

Code review development toolset,
development
environments

Code management High

24
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

Defect handling Development toolset,
development
environments

Code management High

Technical debt
mitigation

Workflow and task
tracking systems, Known
errors database,
Development toolset,
development
environments

Code management High

Code refactoring development toolset,
development
environments

Code management High

Research and
Development

Development toolset,
development
environments

Code management High

Regular meetings and
improvement activities

Development toolset,
development
environments

Collaboration and
scheduling; record
keeping

Medium

Software operation and
maintenance automation

Remote administration
tools, configuration
management tools,
automated deployment
systems, development
toolset, development
environments

Scripted task automation
and scheduling,
infrastructure
orchestration

High

Managing development
environments

Configuration
management toolset,
development
environments

Infrastructure
orchestration

High

Version Control Development toolset,
development
environments

Code repository
management

High

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

25

AXELOS Copyright

View Only – Not for Redistribution
© 2019

 Partners and suppliers
Very few services are delivered using only an organization’s own resources. Many organizations
often depend on services provided by third parties (see ITIL® Foundation: ITIL 4 Edition section 2.4
for a model of a service relationship).

Development teams represent a highly specialised capability that most organisations would not
have suitable means to manage. It is common for contemporary internal service providers to
outsource the software development and management capabilities to third parties. When either or
both development and management of business applications and other software is sourced
commercially, the service provider management should consider all complexities that accompany
defining what good output from that external provider must look like.

There are several important quality criteria that need to be negotiated, agreed, and defined in the
respective software sourcing contract:

● The definitions of service. As obvious as it can be, the exact and explicit definition of the
service offerings for a development and management contract is an absolute must. The
activities within this practice provide an overall range of things that a development team can do
in order to ensure software quality. That list is not limited to simple new coding and bug-fixing
but encompasses whole software lifecycle. The parties should consciously negotiate the
required activities from the range and consider both pricing, and partnership benefits that are
most important to both.

● People and organisations. The parties must agree on the organizational structure, expected
knowledge transfer mechanisms, expected turnover rates, vetting principles, and geographical
location of the staff that will populate the development teams.

● Value streams and processes. The parties must agree on how the external development teams
should interact with others. This is especially important, where some development and
management capabilities are retained within the service provider and external teams will need
to be compliant to two sets of controls: one within the supplier organization, i.e. their
employer, and another one within the service provider, i.e. the client organization. Examples of
clashes that can occur are abound: from simple burden of double record keeping and backlog
grooming (borderline waste), to complications during availability planning. The work of service
owners (or product owners in an agile environment) becomes pivotal in analysing the external
development team involvement in value streams.

● Information and technology. The parties must clearly define the single systems of record for the
purpose of the contract, as mentioned above, there is little merit in making the development
teams spend time in duplicating defect records in their ‘native’ and external systems. The
information security considerations and onboarding of new staff are also something to be
covered explicitly in the agreement.

Arguably a systemic cost-benefit analysis yields results quite different from an intuitive
expectation that external specialised development teams are always ‘cheaper’ and ‘more
effective’ than internal teams. The additional benefits expected in the short term have no long-
term guarantee, simply because of the speed and emerging nature of software development. That
rate of change in practices, architectures, and user expectations may require capabilities that an
external supplier might not be willing to deliver.

26
Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

AXELOS Copyright
View Only – Not for Redistribution

© 2019

 Important reminder
Most of the content of the practice guides should be taken as a suggestion of areas that an
organization might consider when establishing and nurturing their own practices. The practice
guides are catalogues of things that organizations might think about, not a list of answers. When
using the content of the ITIL Practice guides, organizations should always follow the ITIL guiding
principles:

● focus on value
● start where you are
● progress iteratively with feedback
● collaborate and promote visibility
● think and work holistically
● keep it simple and practical
● optimize and automate.

More information on the guiding principles and their application can be found in section 4.3 of the
ITIL® Foundation: ITIL 4 Edition publication.

 Software development and
management

AXELOS Copyright
View Only – Not for Redistribution

© 2019

27

AXELOS Copyright

View Only – Not for Redistribution
© 2019

 Acknowledgments
AXELOS Ltd is grateful to everyone who has contributed to the development of this guidance.
These practice guides incorporate an unprecedented level of enthusiasm and feedback from across
the ITIL community. In particular, AXELOS would like to thank the following:

8.1 AUTHORS

Mark Smalley, Konstantin Naryzhny

8.2 REVIEWERS

Oleg Skrynnik

AXELOS Copyright
View Only – Not for Redistribution

© 2019

	1 About this document
	1.1 ITIL® 4 qualification scheme

	2 General information
	2.1 Purpose and description
	2.2 Terms and concepts
	2.3 Scope
	2.4 Practice success factors
	2.4.1 Agree and improve an organization's approach to development and management of software
	2.4.2 Ensure that software continually meets organization's requirements and quality criteria throughout its lifecycle

	2.5 Key metrics

	3 Value streams and processes
	3.1 Value stream contribution
	3.2 Processes

	4 Organizations and people
	4.1 Roles, competencIes, and responsibilities
	4.1.1 Roles involved in the software development and management activities
	4.1.2 Software developer /team member
	4.1.3 Software team leader
	4.1.4 Scrum master / Agile coach
	4.1.5 Product owner

	4.2 Organizational structures and teams

	5 Information and technology
	5.1 Information exchange
	5.2 Automation and tooling

	6 Partners and suppliers
	7 Important reminder
	8 Acknowledgments
	8.1 AUTHORS
	8.2 REVIEWERS
	8.2 REVIEWERS

